z-logo
Premium
Modelling the evolution of distributions: an application to Major League baseball
Author(s) -
Koop Gary
Publication year - 2004
Publication title -
journal of the royal statistical society: series a (statistics in society)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.103
H-Index - 84
eISSN - 1467-985X
pISSN - 0964-1998
DOI - 10.1111/j.1467-985x.2004.a473.x
Subject(s) - league , bayesian probability , probability distribution , econometrics , distribution (mathematics) , balance (ability) , computer science , discretization , mathematics , operations research , statistics , artificial intelligence , medicine , mathematical analysis , physics , astronomy , physical medicine and rehabilitation
Summary.  We develop Bayesian techniques for modelling the evolution of entire distributions over time and apply them to the distribution of team performance in Major League baseball for the period 1901–2000. Such models offer insight into many key issues (e.g. competitive balance) in a way that regression‐based models cannot. The models involve discretizing the distribution and then modelling the evolution of the bins over time through transition probability matrices. We allow for these matrices to vary over time and across teams. We find that, with one exception, the transition probability matrices (and, hence, competitive balance) have been remarkably constant across time and over teams. The one exception is the Yankees, who have outperformed all other teams.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here