Premium
Geospatial Information Integration for Authoritative and Crowd Sourced Road Vector Data
Author(s) -
Du Heshan,
Anand Suchith,
Alechitasha,
Morley Jeremy,
Hart Glen,
Leibovici Didier,
Jackson Mike,
Ware Mark
Publication year - 2012
Publication title -
transactions in gis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.721
H-Index - 63
eISSN - 1467-9671
pISSN - 1361-1682
DOI - 10.1111/j.1467-9671.2012.01303.x
Subject(s) - geospatial analysis , ontology , computer science , data science , data mining , information retrieval , feature (linguistics) , flexibility (engineering) , volunteered geographic information , geography , remote sensing , philosophy , linguistics , statistics , mathematics , epistemology
This article describes results from a research project undertaken to explore the technical issues associated with integrating unstructured crowd sourced data with authoritative national mapping data. The ultimate objective is to develop methodologies to ensure the feature enrichment of authoritative data, using crowd sourced data. Users increasingly find that they wish to use data from both kinds of geographic data sources. Different techniques and methodologies can be developed to solve this problem. In our previous research, a position map matching algorithm was developed for integrating authoritative and crowd sourced road vector data, and showed promising results (Anand et al. 2010). However, especially when integrating different forms of data at the feature level, these techniques are often time consuming and are more computationally intensive than other techniques available. To tackle these problems, this project aims at developing a methodology for automated conflict resolution, linking and merging of geographical information from disparate authoritative and crowd‐sourced data sources. This article describes research undertaken by the authors on the design, implementation, and evaluation of algorithms and procedures for producing a coherent ontology from disparate geospatial data sources. To integrate road vector data from disparate sources, the method presented in this article first converts input data sets to ontologies, and then merges these ontologies into a new ontology. This new ontology is then checked and modified to ensure that it is consistent. The developed methodology can deal with topological and geometry inconsistency and provide more flexibility for geospatial information merging.