z-logo
Premium
An Adaptive Method of High Accuracy Surface Modeling and Its Application to Simulating Elevation Surfaces
Author(s) -
Yue TianXiang,
Chen ChuanFa,
Li BaiLian
Publication year - 2010
Publication title -
transactions in gis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.721
H-Index - 63
eISSN - 1467-9671
pISSN - 1361-1682
DOI - 10.1111/j.1467-9671.2010.01213.x
Subject(s) - mean squared error , estimator , computation , elevation (ballistics) , algorithm , surface (topology) , root mean square , computer science , pixel , approximation error , mathematics , statistics , artificial intelligence , engineering , geometry , electrical engineering
An adaptive method is employed to speed up computation of high accuracy surface modeling (HASM), for which an error indicator and an error estimator are developed. Root mean‐square error (RMSE) is used as the error estimator that is formulated as a function of gully density and grid cell size. The error indicator is developed on the basis of error surfaces for different spatial resolutions, which are interpolated in terms of the absolute errors calculated at sampled points while paying attention to the landform characteristics. The error surfaces indicate the magnitude and distribution of errors in each step of adaptive refinement and make spatial changes to the errors in the simulation process visualized. The adaptive method of high accuracy surface modeling (HASM‐AM) is applied to simulating elevation surface of the Dong‐Zhi tableland with 27.24 million pixels at a spatial resolution of 10 m × 10 m. Test results show that HASM‐AM has greatly speeded up computation by avoiding unnecessary calculations and saving memory. In addition, HASM‐AM improves simulation accuracy.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here