Premium
Integrated Spatio‐temporal Data Mining for Forest Fire Prediction
Author(s) -
Cheng Tao,
Wang Jiaqiu
Publication year - 2008
Publication title -
transactions in gis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.721
H-Index - 63
eISSN - 1467-9671
pISSN - 1361-1682
DOI - 10.1111/j.1467-9671.2008.01117.x
Subject(s) - environmental resource management , geography , computer science , environmental science
Forests play a critical role in sustaining the human environment. Most forest fires not only destroy the natural environment and ecological balance, but also seriously threaten the security of life and property. The early discovery and forecasting of forest fires are both urgent and necessary for forest fire control. This article explores the possible applications of Spatio‐temporal Data Mining for forest fire prevention. The research pays special attention to the spatio‐temporal forecasting of forest fire areas based upon historic observations. An integrated spatio‐temporal forecasting framework – ISTFF – is proposed: it uses a dynamic recurrent neural network for spatial forecasting. The principle and algorithm of ISTFF are presented, and are then illustrated by a case study of forest fire area prediction in Canada. Comparative analysis of ISTFF with other methods shows its high accuracy in short‐term prediction. The effect of spatial correlations on the prediction accuracy of spatial forecasting is also explored.