Premium
Universal and Integrable Aspects of an Elliptic Vortex Representation in 2+1‐Dimensional Magneto‐Gasdynamics
Author(s) -
Schief W. K.,
An H.,
Rogers C.
Publication year - 2013
Publication title -
studies in applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 46
eISSN - 1467-9590
pISSN - 0022-2526
DOI - 10.1111/j.1467-9590.2012.00559.x
Subject(s) - integrable system , ansatz , vortex , hamiltonian system , representation (politics) , substructure , mathematical physics , hamiltonian (control theory) , boundary value problem , magneto , physics , mathematics , mathematical analysis , quantum mechanics , mechanics , magnet , mathematical optimization , structural engineering , politics , political science , law , engineering
Integrable substructure of a 2+1‐dimensional magneto‐gasdynamic system is investigated via a general elliptic vortex ansatz. Certain universal and Hamiltonian aspects of the admitted representation are uncovered. A class of confined magneto‐gasdynamic flows with an elliptic cylindrical boundary is isolated with time‐dependent semiaxes determined by an integrable Ermakov–Ray–Reid system.