Premium
The Small Vorticity Nonlinear Critical Layer for Kelvin Modes on a Vortex
Author(s) -
Caillol P.,
Maslowe S. A.
Publication year - 2007
Publication title -
studies in applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 46
eISSN - 1467-9590
pISSN - 0022-2526
DOI - 10.1111/j.1467-9590.2007.00372.x
Subject(s) - vorticity , vortex , boundary layer , critical point (mathematics) , physics , burgers vortex , nonlinear system , singularity , classical mechanics , instability , reynolds number , mechanics , mathematical analysis , mathematics , quantum mechanics , turbulence
We consider in this paper the propagation of neutral modes along a vortex with velocity profile being the radial coordinate. In the linear stability theory governing such flows, the boundary in parameter space separating stable and unstable regions is usually comprised of modes that are singular at some value of r denoted r c , the critical point. The singularity can be dealt with by adding viscous and/or nonlinear effects within a thin critical layer centered on the critical point. At high Reynolds numbers, the case of most interest in applications, nonlinearity is essential, but it develops that viscosity, treated here as a small perturbation, still plays a subtle role. After first presenting the scaling for the general case, we formulate a nonlinear critical layer theory valid when the critical point occurs far enough from the center of the vortex so that the vorticity there is small. Solutions are found having no phase change across the critical layer thus permitting the existence of modes not possible in a linear theory. It is found that both the axial and azimuthal mean vorticity are different on either side of the critical layer as a result of the wave–mean flow interaction. A long wave analysis with O (1) vorticity leads to similar conclusions.