Premium
Nonlinear Spatial Evolution of Small Disturbances from Boundary Conditions in Flat Inclined‐Channel Flow
Author(s) -
Spindler Richard,
Yu Jun
Publication year - 2006
Publication title -
studies in applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 46
eISSN - 1467-9590
pISSN - 0022-2526
DOI - 10.1111/j.1467-9590.2006.00334.x
Subject(s) - classification of discontinuities , froude number , boundary value problem , mathematical analysis , mathematics , nonlinear system , instability , initial value problem , flow (mathematics) , boundary (topology) , shock wave , mechanics , geometry , physics , quantum mechanics
The asymptotic behavior of small disturbances as they evolve spatially from boundary conditions in a flat inclined channel is determined. These small disturbances develop into traveling waves called roll waves, first discussed by Dressler in 1949. Roll waves exist if the Froude number F exceeds 2, which consist of a periodic pattern of bores, or discontinuities. After confirming the instability condition for F > 2 for the linearized equations in the boundary value case, the nonlinear boundary value problem for the weakly unstable region of F slightly larger than 2 is studied. Multiple scales and the Fredholm alternative theorem are applied to determine the evolution of the solution in space. It is found that the solution is dominated by the evolution of the disturbance along one characteristic. The shock conditions governing the asymptotic solution are determined and these conditions are used to determine the approximate shape of the resulting traveling wave from the solution. Both asymptotic and numerical results for periodic disturbances are presented.