Premium
Choosing Priors for Constrained Analysis of Variance: Methods Based on Training Data
Author(s) -
WESEL FLORYT VAN,
HOIJTINK HERBERT,
KLUGKIST IRENE
Publication year - 2011
Publication title -
scandinavian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.359
H-Index - 65
eISSN - 1467-9469
pISSN - 0303-6898
DOI - 10.1111/j.1467-9469.2010.00719.x
Subject(s) - prior probability , variance (accounting) , mathematics , bayesian probability , econometrics , inference , bayesian inference , computer science , machine learning , artificial intelligence , statistics , accounting , business
. This article combines the best of both objective and subjective Bayesian inference in specifying priors for inequality and equality constrained analysis of variance models. Objectivity can be found in the use of training data to specify a prior distribution, subjectivity can be found in restrictions on the prior to formulate models. The aim of this article is to find the best model in a set of models specified using inequality and equality constraints on the model parameters. For the evaluation of the models an encompassing prior approach is used. The advantage of this approach is that only a prior for the unconstrained encompassing model needs to be specified. The priors for all constrained models can be derived from this encompassing prior. Different choices for this encompassing prior will be considered and evaluated.