z-logo
Premium
Goodness‐of‐Fit Test for Monotone Functions
Author(s) -
DUROT CÉCILE,
REBOUL LAURENCE
Publication year - 2010
Publication title -
scandinavian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.359
H-Index - 65
eISSN - 1467-9469
pISSN - 0303-6898
DOI - 10.1111/j.1467-9469.2010.00688.x
Subject(s) - monotone polygon , mathematics , parametric statistics , estimator , goodness of fit , null hypothesis
.  In this article, we develop a test for the null hypothesis that a real‐valued function belongs to a given parametric set against the non‐parametric alternative that it is monotone, say decreasing. The method is described in a general model that covers the monotone density model, the monotone regression and the right‐censoring model with monotone hazard rate. The criterion for testing is an ‐distance between a Grenander‐type non‐parametric estimator and a parametric estimator computed under the null hypothesis. A normalized version of this distance is shown to have an asymptotic normal distribution under the null, whence a test can be developed. Moreover, a bootstrap procedure is shown to be consistent to calibrate the test.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom