Premium
Biases and Uncertainty in Climate Projections
Author(s) -
BUSER CHRISTOPH M.,
KÜNSCH HANS R.,
WEBER ALAIN
Publication year - 2010
Publication title -
scandinavian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.359
H-Index - 65
eISSN - 1467-9469
pISSN - 0303-6898
DOI - 10.1111/j.1467-9469.2009.00686.x
Subject(s) - mathematics , frequentist inference , bayesian probability , econometrics , prior probability , statistics , constant (computer programming) , multiplicative function , identifiability , climate model , climate change , bayesian inference , computer science , mathematical analysis , ecology , biology , programming language
. We study statistical procedures to quantify uncertainty in multivariate climate projections based on several deterministic climate models. We introduce two different assumptions – called constant bias and constant relation respectively – for extrapolating the substantial additive and multiplicative biases present during the control period to the scenario period. There are also strong indications that the biases in the scenario period are different from the extrapolations from the control period. Including such changes in the statistical models leads to an identifiability problem that we solve in a frequentist analysis using a zero sum side condition and in a Bayesian analysis using informative priors. The Bayesian analysis provides estimates of the uncertainty in the parameter estimates and takes this uncertainty into account for the predictive distributions. We illustrate the method by analysing projections of seasonal temperature and precipitation in the Alpine region from five regional climate models in the PRUDENCE project.