Premium
Simplex Mixed‐Effects Models for Longitudinal Proportional Data
Author(s) -
QIU ZHENGUO,
SONG PETER X.K.,
TAN MING
Publication year - 2008
Publication title -
scandinavian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.359
H-Index - 65
eISSN - 1467-9469
pISSN - 0303-6898
DOI - 10.1111/j.1467-9469.2008.00603.x
Subject(s) - mathematics , restricted maximum likelihood , generalized linear mixed model , laplace's method , statistics , quasi likelihood , outlier , mixed model , simplex , inference , likelihood function , random effects model , statistical inference , count data , maximum likelihood , poisson distribution , combinatorics , computer science , bayesian probability , medicine , meta analysis , artificial intelligence
. Continuous proportional outcomes are collected from many practical studies, where responses are confined within the unit interval (0,1). Utilizing Barndorff‐Nielsen and Jørgensen's simplex distribution, we propose a new type of generalized linear mixed‐effects model for longitudinal proportional data, where the expected value of proportion is directly modelled through a logit function of fixed and random effects. We establish statistical inference along the lines of Breslow and Clayton's penalized quasi‐likelihood (PQL) and restricted maximum likelihood (REML) in the proposed model. We derive the PQL/REML using the high‐order multivariate Laplace approximation, which gives satisfactory estimation of the model parameters. The proposed model and inference are illustrated by simulation studies and a data example. The simulation studies conclude that the fourth order approximate PQL/REML performs satisfactorily. The data example shows that Aitchison's technique of the normal linear mixed model for logit‐transformed proportional outcomes is not robust against outliers.