Premium
Latent Variable Modelling: A Survey *
Author(s) -
SKRONDAL ANDERS,
RABEHESKETH SOPHIA
Publication year - 2007
Publication title -
scandinavian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.359
H-Index - 65
eISSN - 1467-9469
pISSN - 0303-6898
DOI - 10.1111/j.1467-9469.2007.00573.x
Subject(s) - latent variable , structural equation modeling , latent class model , latent variable model , covariate , econometrics , mathematics , local independence , variable (mathematics) , statistics , mathematical analysis
. Latent variable modelling has gradually become an integral part of mainstream statistics and is currently used for a multitude of applications in different subject areas. Examples of ‘traditional’ latent variable models include latent class models, item–response models, common factor models, structural equation models, mixed or random effects models and covariate measurement error models. Although latent variables have widely different interpretations in different settings, the models have a very similar mathematical structure. This has been the impetus for the formulation of general modelling frameworks which accommodate a wide range of models. Recent developments include multilevel structural equation models with both continuous and discrete latent variables, multiprocess models and nonlinear latent variable models.