Premium
Automatic Road Defect Detection by Textural Pattern Recognition Based on AdaBoost
Author(s) -
Cord Aurélien,
Chambon Sylvie
Publication year - 2012
Publication title -
computer‐aided civil and infrastructure engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.773
H-Index - 82
eISSN - 1467-8667
pISSN - 1093-9687
DOI - 10.1111/j.1467-8667.2011.00736.x
Subject(s) - adaboost , artificial intelligence , computer science , pattern recognition (psychology) , process (computing) , set (abstract data type) , task (project management) , computer vision , image (mathematics) , engineering , support vector machine , systems engineering , programming language , operating system
The state of roads is continuously degrading due to meteorological conditions, ground movements, and traffic, leading to the formation of defects, such as grabbing, holes, and cracks. In this article, a method to automatically distinguish images of road surfaces with defects from road surfaces without defects is presented. This method, based on supervised learning, is generic and may be applied to all type of defects present in those images. They typically present strong textural information with patterns that show fluctuations at small scales and some uniformity at larger scales. The textural information is described by applying a large set of linear and nonlinear filters. To select the most pertinent ones for the current application, a supervised learning based on AdaBoost is performed. The whole process is tested both on a textural recognition task based on the VisTex image database and on road images collected by a dedicated road imaging system. A comparison with a recent cracks detection algorithm from Oliveira and Correia demonstrates the proposed method's efficiency.