z-logo
Premium
A Hybrid Particle Swarm—Gradient Algorithm for Global Structural Optimization
Author(s) -
Plevris Vagelis,
Papadrakakis Manolis
Publication year - 2011
Publication title -
computer‐aided civil and infrastructure engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.773
H-Index - 82
eISSN - 1467-8667
pISSN - 1093-9687
DOI - 10.1111/j.1467-8667.2010.00664.x
Subject(s) - mathematical optimization , particle swarm optimization , computer science , benchmark (surveying) , sequential quadratic programming , convergence (economics) , global optimization , multi swarm optimization , derivative free optimization , mathematics , algorithm , quadratic programming , geodesy , economic growth , economics , geography
  The particle swarm optimization (PSO) method is an instance of a successful application of the philosophy of bounded rationality and decentralized decision making for solving global optimization problems. A number of advantages with respect to other evolutionary algorithms are attributed to PSO making it a prospective candidate for optimum structural design. The PSO‐based algorithm is robust and well suited to handle nonlinear, nonconvex design spaces with discontinuities, exhibiting fast convergence characteristics. Furthermore, hybrid algorithms can exploit the advantages of the PSO and gradient methods. This article presents in detail the basic concepts and implementation of an enhanced PSO algorithm combined with a gradient‐based quasi‐Newton sequential quadratic programming (SQP) method for handling structural optimization problems. The proposed PSO is shown to explore the design space thoroughly and to detect the neighborhood of the global optimum. Then the mathematical optimizer, starting from the best estimate of the PSO and using gradient information, accelerates convergence toward the global optimum. A nonlinear weight update rule for PSO and a simple, yet effective, constraint handling technique for structural optimization are also proposed. The performance, the functionality, and the effect of different setting parameters are studied. The effectiveness of the approach is illustrated in some benchmark structural optimization problems. The numerical results confirm the ability of the proposed methodology to find better optimal solutions for structural optimization problems than other optimization algorithms.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here