z-logo
Premium
Adaptive Compression of Texture Pyramids
Author(s) -
Andujar C.
Publication year - 2012
Publication title -
computer graphics forum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.578
H-Index - 120
eISSN - 1467-8659
pISSN - 0167-7055
DOI - 10.1111/j.1467-8659.2012.03077.x
Subject(s) - computer science , texture compression , texel , artificial intelligence , computer vision , encoding (memory) , texture filtering , rendering (computer graphics) , data compression , luminance , pyramid (geometry) , pattern recognition (psychology) , algorithm , image compression , image texture , image (mathematics) , mathematics , image processing , geometry
High‐quality texture minification techniques, including trilinear and anisotropic filtering, require texture data to be arranged into a collection of pre‐filtered texture maps called mipmaps. In this paper, we present a compression scheme for mipmapped textures which achieves much higher quality than current native schemes by exploiting image coherence across mipmap levels. The basic idea is to use a high‐quality native compressed format for the upper levels of the mipmap pyramid (to retain efficient minification filtering) together with a novel compact representation of the detail provided by the highest‐resolution mipmap. Key elements of our approach include delta‐encoding of the luminance signal, efficient encoding of coherent regions through texel runs following a Hilbert scan, a scheme for run encoding supporting fast random‐access, and a predictive approach for encoding indices of variable‐length blocks. We show that our scheme clearly outperforms native 6:1 compressed texture formats in terms of image quality while still providing real‐time rendering of trilinearly filtered textures.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here