Premium
Social Network Clustering and Visualization using Hierarchical Edge Bundles
Author(s) -
Jia Yuntao,
Garland Michael,
Hart John C.
Publication year - 2011
Publication title -
computer graphics forum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.578
H-Index - 120
eISSN - 1467-8659
pISSN - 0167-7055
DOI - 10.1111/j.1467-8659.2011.02037.x
Subject(s) - visualization , computer science , cluster analysis , hierarchy , graph drawing , enhanced data rates for gsm evolution , hierarchical clustering , data mining , data visualization , social network (sociolinguistics) , social network analysis , theoretical computer science , artificial intelligence , world wide web , social media , economics , market economy
The hierarchical edge bundle (HEB) method generates useful visualizations of dense graphs, such as social networks, but requires a predefined clustering hierarchy, and does not easily benefit from existing straight‐line visualization improvements. This paper proposes a new clustering approach that extracts the community structure of a network and organizes it into a hierarchy that is flatter than existing community‐based clustering approaches and maps better to HEB visualization. Our method not only discovers communities and generates clusters with better modularization qualities, but also creates a balanced hierarchy that allows HEB visualization of unstructured social networks without predefined hierarchies. Results on several data sets demonstrate that this approach clarifies real‐world communication, collaboration and competition network structure and reveals information missed in previous visualizations. We further implemented our techniques into a social network visualization application on facebook.com and let users explore the visualization and community clustering of their own social networks.