z-logo
Premium
Spectralization: Reconstructing spectra from sparse data
Author(s) -
Rump Martin,
Klein Reinhard
Publication year - 2010
Publication title -
computer graphics forum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.578
H-Index - 120
eISSN - 1467-8659
pISSN - 0167-7055
DOI - 10.1111/j.1467-8659.2010.01730.x
Subject(s) - rgb color model , computer science , rendering (computer graphics) , artificial intelligence , computer vision , scanner , spectral imaging , remote sensing , geography
Traditional RGB reflectance and light data suffers from the problem of metamerism and is not suitable for rendering purposes where exact color reproduction under many different lighting conditions is needed. Nowadays many setups for cheap and fast acquisition of RGB or similar trichromatic datasets are available. In contrast to this, multi‐ or even hyper‐spectral measurements require costly hardware and have severe limitations in many cases. In this paper, we present an approach to combine efficiently captured RGB data with spectral data that can be captured with small additional effort for example by scanning a single line of an image using a spectral line‐scanner. Our algorithm can infer spectral reflectances and illumination from such sparse spectral and dense RGB data. Unlike other approaches, our method reaches acceptable perceptual errors with only three channels for the dense data and thus enables further use of highly efficient RGB capture systems. This way, we are able to provide an easier and cheaper way to capture spectral textures, BRDFs and environment maps for the use in spectral rendering systems.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here