Premium
Binary Shading Using Appearance and Geometry
Author(s) -
Buchholz Bert,
Boubekeur Tamy,
DeCarlo Doug,
Alexa Marc
Publication year - 2010
Publication title -
computer graphics forum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.578
H-Index - 120
eISSN - 1467-8659
pISSN - 0167-7055
DOI - 10.1111/j.1467-8659.2010.01712.x
Subject(s) - energy minimization , cut , shading , grid , curvature , artificial intelligence , computer science , computer vision , geometry , binary number , mathematics , image (mathematics) , computer graphics (images) , image segmentation , physics , quantum mechanics , arithmetic
In the style of binary shading, shape and illumination are depicted using two colours, typically black and white, which form coherent lines and regions in the image. We formulate the problem of assigning colours in the rendered image as an energy minimization, computed using graph cut on the image grid. The terms of this energy come from two sources: appearance (shading) and geometry (depth and curvature). Our contributions are in the use of geometric information in determining colours, and how this information is incorporated into a graph cut approach. This optimization yields boundaries between black and white regions that tend towards being shorter and to run along geometric features like creases. We show a range of results, and demonstrate that this approach produces more coherent images than simpler approaches that make local decisions when assigning colours, or that do not use geometry.