z-logo
Premium
Dynamic Multi‐View Exploration of Shape Spaces
Author(s) -
Busking Stef,
Botha Charl P.,
Post Frits H.
Publication year - 2010
Publication title -
computer graphics forum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.578
H-Index - 120
eISSN - 1467-8659
pISSN - 0167-7055
DOI - 10.1111/j.1467-8659.2009.01668.x
Subject(s) - active shape model , point distribution model , shape analysis (program analysis) , computer science , topological skeleton , computer vision , heat kernel signature , object (grammar) , population , artificial intelligence , scatter plot , point (geometry) , projection (relational algebra) , visualization , computer graphics (images) , representation (politics) , space (punctuation) , geometry , mathematics , algorithm , segmentation , demography , machine learning , sociology , politics , political science , law , programming language , operating system , static analysis
Statistical shape modeling is a widely used technique for the representation and analysis of the shapes and shape variations present in a population. A statistical shape model models the distribution in a high dimensional shape space, where each shape is represented by a single point. We present a design study on the intuitive exploration and visualization of shape spaces and shape models. Our approach focuses on the dual‐space nature of these spaces. The high‐dimensional shape space represents the population, whereas object space represents the shape of the 3D object associated with a point in shape space. A 3D object view provides local details for a single shape. The high dimensional points in shape space are visualized using a 2D scatter plot projection, the axes of which can be manipulated interactively. This results in a dynamic scatter plot, with the further extension that each point is visualized as a small version of the object shape that it represents. We further enhance the population‐object duality with a new type of view aimed at shape comparison. This new “shape evolution view” visualizes shape variability along a single trajectory in shape space, and serves as a link between the two spaces described above. Our three‐view exploration concept strongly emphasizes linked interaction between all spaces. Moving the cursor over the scatter plot or evolution views, shapes are dynamically interpolated and shown in the object view. Conversely, camera manipulation in the object view affects the object visualizations in the other views. We present a GPU‐accelerated implementation, and show the effectiveness of the three‐view approach using a number of real‐world cases. In these, we demonstrate how this multi‐view approach can be used to visually explore important aspects of a statistical shape model, including specificity, compactness and reconstruction error.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here