z-logo
Premium
Improved Variational Guiding of Smoke Animations
Author(s) -
Nielsen Michael B.,
Christensen Brian B.
Publication year - 2010
Publication title -
computer graphics forum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.578
H-Index - 120
eISSN - 1467-8659
pISSN - 0167-7055
DOI - 10.1111/j.1467-8659.2009.01640.x
Subject(s) - computer science , animation , set (abstract data type) , computation , eulerian path , constant (computer programming) , resolution (logic) , matrix (chemical analysis) , coupling (piping) , algorithm , computational science , simulation , computer graphics (images) , artificial intelligence , mathematics , mechanical engineering , materials science , lagrangian , engineering , composite material , programming language
Smoke animations are hard to art‐direct because simple changes in parameters such as simulation resolution often lead to unpredictable changes in the final result. Previous work has addressed this problem with a guiding approach which couples low‐resolution simulations – that exhibit the desired flow and behaviour – to the final, high‐resolution simulation. This is done in such a way that the desired low frequency features are to some extent preserved in the high‐resolution simulation. However, the steady (i.e. constant) guiding used often leads to a lack of sufficiently high detail, and employing time‐dependent guiding is expensive because the matrix of the resulting set of equations needs to be recomputed at every iteration. We propose an improved mathematical model for Eulerian‐based simulations which is better suited for dynamic, time‐dependent guiding of smoke animations through a novel variational coupling of the low‐ and high‐resolution simulations. Our model results in a matrix that does not require re‐computation when the guiding changes over time, and hence we can employ time‐dependent guiding more efficiently both in terms of storage and computational requirements. We demonstrate that time‐dependent guiding allows for more high frequency detail to develop without losing correspondence to the low resolution simulation. Furthermore, we explore various artistic effects made possible by time‐dependent guiding.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here