Premium
An Adaptive Contact Model for the Robust Simulation of Knots
Author(s) -
Spillmann Jonas,
Teschner Matthias
Publication year - 2008
Publication title -
computer graphics forum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.578
H-Index - 120
eISSN - 1467-8659
pISSN - 0167-7055
DOI - 10.1111/j.1467-8659.2008.01147.x
Subject(s) - computer science , collision detection , collision , knot (papermaking) , rod , minification , algorithm , mathematical optimization , mathematics , engineering , medicine , alternative medicine , computer security , pathology , chemical engineering , programming language
In this paper, we present an adaptive model for dynamically deforming hyper‐elastic rods. In contrast to existing approaches, adaptively introduced control points are not governed by geometric subdivision rules. Instead, their states are determined by employing a non‐linear energy‐minimization approach. Since valid control points are computed instantaneously, post‐stabilization schemes are avoided and the stability of the dynamic simulation is improved. Due to inherently complex contact configurations, the simulation of knot tying using rods is a challenging task. In order to address this problem, we combine our adaptive model with a robust and accurate collision handling method for elastic rods. By employing our scheme, complex knot configurations can be simulated in a physically plausible way.