Premium
Practical CFD Simulations on Programmable Graphics Hardware using SMAC †
Author(s) -
Scheidegger Carlos E.,
Comba João L. D.,
Da Cunha Rudnei D.
Publication year - 2005
Publication title -
computer graphics forum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.578
H-Index - 120
eISSN - 1467-8659
pISSN - 0167-7055
DOI - 10.1111/j.1467-8659.2005.00897.x
Subject(s) - computer science , solver , computational science , graphics hardware , general purpose computing on graphics processing units , graphics , parallel computing , computational fluid dynamics , cuda , benchmark (surveying) , computer graphics (images) , aerospace engineering , geodesy , geography , engineering , programming language
The explosive growth in integration technology and the parallel nature of rasterization‐based graphics APIs (Application Programming Interface) changed the panorama of consumer‐level graphics: today, GPUs (Graphics Processing Units) are cheap, fast and ubiquitous. We show how to harness the computational power of GPUs and solve the incompressible Navier‐Stokes fluid equations significantly faster (more than one order of magnitude in average) than on CPU solvers of comparable cost. While past approaches typically used Stam's implicit solver, we use a variation of SMAC (Simplified Marker and Cell). SMAC is widely used in engineering applications, where experimental reproducibility is essential. Thus, we show that the GPU is a viable and affordable processor for scientific applications. Our solver works with general rectangular domains (possibly with obstacles), implements a variety of boundary conditions and incorporates energy transport through the traditional Boussinesq approximation. Finally, we discuss the implications of our solver in light of future GPU features, and possible extensions such as three‐dimensional domains and free‐boundary problems.