Premium
Representation and combination of uncertainty with belief functions and possibility measures
Author(s) -
Dubois Didler,
Prade Henri
Publication year - 1988
Publication title -
computational intelligence
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.353
H-Index - 52
eISSN - 1467-8640
pISSN - 0824-7935
DOI - 10.1111/j.1467-8640.1988.tb00279.x
Subject(s) - dempster–shafer theory , possibility theory , artificial intelligence , computer science , pooling , axiom , set (abstract data type) , representation (politics) , fuzzy set , field (mathematics) , fuzzy logic , belief structure , knowledge representation and reasoning , machine learning , mathematics , geometry , politics , political science , pure mathematics , law , programming language
The theory of evidence proposed by G. Shafer is gaining more and more acceptance in the field of artificial intelligence, for the purpose of managing uncertainty in knowledge bases. One of the crucial problems is combining uncertain pieces of evidence stemming from several sources, whether rules or physical sensors. This paper examines the framework of belief functions in terms of expressive power for knowledge representation. It is recalled that probability theory and Zadeh's theory of possibility are mathematically encompassed by the theory of evidence, as far as the evaluation of belief is concerned. Empirical and axiomatic foundations of belief functions and possibility measures are investigated. Then the general problem of combining uncertain evidence is addressed, with focus on Dempster rule of combination. It is pointed out that this rule is not very well adapted to the pooling of conflicting information. Alternative rules are proposed to cope with this problem and deal with specific cases such as nonreliable sources, nonexhaustive sources, inconsistent sources, and dependent sources. It is also indicated that combination rules issued from fuzzy set and possibility theory look more flexible than Dempster rule because many variants exist, and their numerical stability seems to be better.