Premium
PARAMETRIC FRACTIONAL IMPUTATION FOR NON‐IGNORABLE CATEGORICAL MISSING DATA WITH FOLLOW‐UP
Author(s) -
Kim Ji Young
Publication year - 2012
Publication title -
australian and new zealand journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.434
H-Index - 41
eISSN - 1467-842X
pISSN - 1369-1473
DOI - 10.1111/j.1467-842x.2012.00673.x
Subject(s) - missing data , imputation (statistics) , categorical variable , mathematics , identifiability , statistics , weighting , parametric statistics , data set , sample (material) , medicine , chemistry , chromatography , radiology
Summary Incomplete data subject to non‐ignorable non‐response are often encountered in practice and have a non‐identifiability problem. A follow‐up sample is randomly selected from the set of non‐respondents to avoid the non‐identifiability problem and get complete responses. Glynn, Laird, & Rubin analyzed non‐ignorable missing data with a follow‐up sample under a pattern mixture model. In this article, maximum likelihood estimation of parameters of the categorical missing data is considered with a follow‐up sample under a selection model. To estimate the parameters with non‐ignorable missing data, the EM algorithm with weighting, proposed by Ibrahim, is used. That is, in the E‐step, the weighted mean is calculated using the fractional weights for imputed data. Variances are estimated using the approximated jacknife method. Simulation results are presented to compare the proposed method with previously presented methods.