Premium
CONFIDENCE INTERVALS FOR THE DIFFERENCE BETWEEN TWO PARTIAL AUCS
Author(s) -
Huang Xin,
Qin Gengsheng,
Yuan Yan,
Zhou Xiaohua
Publication year - 2012
Publication title -
australian and new zealand journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.434
H-Index - 41
eISSN - 1467-842X
pISSN - 1369-1473
DOI - 10.1111/j.1467-842x.2012.00648.x
Subject(s) - empirical likelihood , mathematics , confidence interval , statistics , nonparametric statistics , cdf based nonparametric confidence interval , receiver operating characteristic , coverage probability , parametric statistics , sample size determination
Summary As new diagnostic tests are developed and marketed, it is very important to be able to compare the accuracy of a given two continuous‐scale diagnostic tests. An effective method to evaluate the difference between the diagnostic accuracy of two tests is to compare partial areas under the receiver operating characteristic curves (AUCs). In this paper, we review existing parametric methods. Then, we propose a new semiparametric method and a new nonparametric method to investigate the difference between two partial AUCs. For the difference between two partial AUCs under each method, we derive a normal approximation, define an empirical log‐likelihood ratio, and show that the empirical log‐likelihood ratio follows a scaled chi‐square distribution. We construct five confidence intervals for the difference based on normal approximation, bootstrap, and empirical likelihood methods. Finally, extensive simulation studies are conducted to compare the finite‐sample performances of these intervals, and a real example is used as an application of our recommended intervals. The simulation results indicate that the proposed hybrid bootstrap and empirical likelihood intervals outperform other existing intervals in most cases.