Premium
BAYESIAN HYPER‐LASSOS WITH NON‐CONVEX PENALIZATION
Author(s) -
Griffin Jim E.,
Brown Philip J.
Publication year - 2011
Publication title -
australian and new zealand journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.434
H-Index - 41
eISSN - 1467-842X
pISSN - 1369-1473
DOI - 10.1111/j.1467-842x.2011.00641.x
Subject(s) - mathematics , lasso (programming language) , cauchy distribution , prior probability , exponential family , bayesian probability , estimator , bayesian inference , statistics , computer science , world wide web
Summary The Lasso has sparked interest in the use of penalization of the log‐likelihood for variable selection, as well as for shrinkage. We are particularly interested in the more‐variables‐than‐observations case of characteristic importance for modern data. The Bayesian interpretation of the Lasso as the maximum a posteriori estimate of the regression coefficients, which have been given independent, double exponential prior distributions, is adopted. Generalizing this prior provides a family of hyper‐Lasso penalty functions, which includes the quasi‐Cauchy distribution of Johnstone and Silverman as a special case. The properties of this approach, including the oracle property, are explored, and an EM algorithm for inference in regression problems is described. The posterior is multi‐modal, and we suggest a strategy of using a set of perfectly fitting random starting values to explore modes in different regions of the parameter space. Simulations show that our procedure provides significant improvements on a range of established procedures, and we provide an example from chemometrics.