Premium
OPTIMAL SEMIPARAMETRIC INFERENCE FOR THE TAIL INDEX BASED ON RATIOS OF THE LARGEST EXTREMES
Author(s) -
Gay R.,
Poskitt D. S.
Publication year - 2008
Publication title -
australian and new zealand journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.434
H-Index - 41
eISSN - 1467-842X
pISSN - 1369-1473
DOI - 10.1111/j.1467-842x.2008.00523.x
Subject(s) - mathematics , estimator , statistics , order statistic , extreme value theory , maximum likelihood , statistic , generalized extreme value distribution , random variable , econometrics
Summary The k largest order statistics in a random sample from a common heavy‐tailed parent distribution with a regularly varying tail can be characterized as Fréchet extremes. This paper establishes that consecutive ratios of such Fréchet extremes are mutually independent and distributed as functions of beta random variables. The maximum likelihood estimator of the tail index based on these ratios is derived, and the exact distribution of the maximum likelihood estimator is determined for fixed k , and the asymptotic distribution as k →∞ . Inferential procedures based upon the maximum likelihood estimator are shown to be optimal. The Fréchet extremes are not directly observable, but a feasible version of the maximum likelihood estimator is equivalent to Hill's statistic. A simple diagnostic is presented that can be used to decide on the largest value of k for which an assumption of Fréchet extremes is sustainable. The results are illustrated using data on commercial insurance claims arising from fires and explosions, and from hurricanes.