z-logo
Premium
MAXIMUM LIKELIHOOD ESTIMATION FOR A POISSON RATE PARAMETER WITH MISCLASSIFIED COUNTS
Author(s) -
Stamey James D.,
Young Dean M.
Publication year - 2005
Publication title -
australian and new zealand journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.434
H-Index - 41
eISSN - 1467-842X
pISSN - 1369-1473
DOI - 10.1111/j.1467-842x.2005.00381.x
Subject(s) - mathematics , statistics , poisson distribution , estimator , estimation theory , maximum likelihood , confidence interval , count data
Summary This paper proposes a Poisson‐based model that uses both error‐free data and error‐prone data subject to misclassification in the form of false‐negative and false‐positive counts. It derives maximum likelihood estimators (MLEs) for the Poisson rate parameter and the two misclassification parameters — the false‐negative parameter and the false‐positive parameter. It also derives expressions for the information matrix and the asymptotic variances of the MLE for the rate parameter, the MLE for the false‐positive parameter, and the MLE for the false‐negative parameter. Using these expressions the paper analyses the value of the fallible data. It studies characteristics of the new double‐sampling rate estimator via a simulation experiment and applies the new MLE estimators and confidence intervals to a real dataset.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here