Premium
CONCOMITANT SCALE ESTIMATION IN REGRESSION PROBLEMS WITH INCREASING DIMENSION
Author(s) -
Welsh A.H.
Publication year - 1989
Publication title -
australian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.434
H-Index - 41
eISSN - 1467-842X
pISSN - 0004-9581
DOI - 10.1111/j.1467-842x.1989.tb00514.x
Subject(s) - estimator , mathematics , statistics , dimension (graph theory) , scale (ratio) , linear regression , scale parameter , regression analysis , range (aeronautics) , econometrics , combinatorics , geography , cartography , materials science , composite material
summary We obtain Bahadur representations for the semi‐interquartile range and the median deviation when these estimators are based on the residuals from a linear regression model with increasing dimension. These representations yield a variety of central limit theorems and conditions under which the two estimators are equivalent. In particular, the representations justify the use of the estimators as concomitant scale estimators in general scale equivariant M ‐estimation of a regression parameter when the dimension of the parameter increases with the sample size.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom