z-logo
Premium
Jackknifing in Categorical Data Analysis
Author(s) -
Parr William C.,
Tolley H. Dennis
Publication year - 1982
Publication title -
australian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.434
H-Index - 41
eISSN - 1467-842X
pISSN - 0004-9581
DOI - 10.1111/j.1467-842x.1982.tb00808.x
Subject(s) - jackknife resampling , categorical variable , multinomial distribution , mathematics , statistics , function (biology) , evolutionary biology , estimator , biology
Summary Estimation of nonlinear functions of a multinomial parameter vector is necessary in many categorical data problems. The first and second order jackknife are explored for the purpose of reduction of bias. The second order jackknife of a function g(.) of a multinomial parameter is shown to be asymptotically normal if all second order partials ∂ 2 g( p )∂dp i ∂ p j obey a Hölder condition with exponent α>1/2. Numerical results for the estimation of the log odds ratio in a 2times2 table demonstrate the efficiency of the jackknife method for reduction of mean‐square‐error and the construction of approximate confidence intervals.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here