Premium
The role of the endocannabinoid system in skeletal muscle and metabolic adaptations to exercise: potential implications for the treatment of obesity
Author(s) -
Heyman E.,
Gamelin F.X.,
Aucouturier J.,
Di Marzo V.
Publication year - 2012
Publication title -
obesity reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.845
H-Index - 162
eISSN - 1467-789X
pISSN - 1467-7881
DOI - 10.1111/j.1467-789x.2012.01026.x
Subject(s) - endocannabinoid system , anandamide , cannabinoid receptor , mitochondrial biogenesis , medicine , endocrinology , skeletal muscle , receptor , biology , chemistry , agonist , microbiology and biotechnology , mitochondrion
Summary The results of recent studies add the endocannabinoid system, and more specifically CB1 receptor signalling, to the complex mechanisms that negatively modulate insulin sensitivity and substrate oxidation in skeletal muscle. CB1 receptors might become overactive in the skeletal muscle during obesity due to increased levels of endocannabinoids . However, quite surprisingly, one of the most studied endocannabinoids, anandamide, when administered in a sufficient dose, was shown to improve muscle glucose uptake and activate some key molecules of insulin signalling and mitochondrial biogenesis. This is probably because anandamide is only a partial agonist at CB1 receptors and interacts with other receptors (PPARγ, TRPV1), which may trigger positive metabolic effects. This putative beneficial role of anandamide is worth considering because increased plasma anandamide levels were recently reported after intense exercise. Whether the endocannabinoid system is involved in the positive exercise effects on mitochondrial biogenesis and glucose fatty acid oxidation remains to be confirmed. Noteworthy, when exercise becomes chronic, a decrease in CB1 receptor expression in obese metabolically deregulated tissues occurs. It is then tempting to hypothesize that physical activity would represent a complementary alternative approach for the clinical management of endocannabinoid system deregulation in obesity, without the side effects occurring with CB1 receptor antagonists.