Premium
Face‐to‐face interference in typical and atypical development
Author(s) -
Riby Deborah M.,
DohertySneddon Gwyneth,
Whittle Lisa
Publication year - 2012
Publication title -
developmental science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.801
H-Index - 127
eISSN - 1467-7687
pISSN - 1363-755X
DOI - 10.1111/j.1467-7687.2011.01125.x
Subject(s) - psychology , gaze , task (project management) , cognitive psychology , eye contact , cognition , typically developing , autism spectrum disorder , interpersonal communication , autism , social cue , face (sociological concept) , eye tracking , social cognition , developmental psychology , communication , neuroscience , computer science , social science , management , sociology , psychoanalysis , computer vision , economics
Visual communication cues facilitate interpersonal communication. It is important that we look at faces to retrieve and subsequently process such cues. It is also important that we sometimes look away from faces as they increase cognitive load that may interfere with online processing. Indeed, when typically developing individuals hold face gaze it interferes with task completion. In this novel study we quantify face interference for the first time in Williams syndrome (WS) and Autism Spectrum Disorder (ASD). These disorders of development impact on cognition and social attention, but how do faces interfere with cognitive processing? Individuals developing typically as well as those with ASD (n = 19) and WS (n = 16) were recorded during a question and answer session that involved mathematics questions. In phase 1 gaze behaviour was not manipulated, but in phase 2 participants were required to maintain eye contact with the experimenter at all times. Looking at faces decreased task accuracy for individuals who were developing typically. Critically, the same pattern was seen in WS and ASD, whereby task performance decreased when participants were required to hold face gaze. The results show that looking at faces interferes with task performance in all groups. This finding requires the caveat that individuals with WS and ASD found it harder than individuals who were developing typically to maintain eye contact throughout the interaction. Individuals with ASD struggled to hold eye contact at all points of the interaction while those with WS found it especially difficult when thinking.