Premium
Vitamin A palmitate photostability and stability over time
Author(s) -
Carlotti M. E.,
Rossatto V.,
Gallarate M.,
Trotta M.,
Debernardi F.
Publication year - 2004
Publication title -
international journal of cosmetic science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.532
H-Index - 62
eISSN - 1468-2494
pISSN - 0142-5463
DOI - 10.1111/j.1467-2494.2004.00233_1.x
Subject(s) - retinyl palmitate , chemistry , phosphatidylcholine , liposome , nanocapsules , chromatography , vitamin , self healing hydrogels , butylated hydroxyanisole , ascorbyl palmitate , antioxidant , organic chemistry , retinol , phospholipid , biochemistry , chemical engineering , membrane , nanoparticle , engineering
Vitamin A palmitate photostability in relation to ultravoilet A (UVA) and ultravoilet B (UVB) was tested in hydroxy ethyl cellulose hydrogels at pH 4.0, 5.6, 7.0, and 8.0, alone and with the addition of sunscreens (3,4‐methylbenzilidencamphor or butyl methoxy dibenzoylmethane) or an antioxidant (butylated hydroxy toluene). The photostability of vitamin A palmitate was also tested in encapsulated systems (Tagravit_A1 microcapsules, Lipotec_liposomes, phosphatidylcholine liposomes, and Lipotec_nanocapsules) dispersed in gels at pH 5.6 and 7.0. The stability of retinyl palmitate over time in hydroxy ethyl cellulose hydrogels at pH 5.6 and 7.0 (stored 1 month at 25 or 40 °C), alone or with butylated hydroxy toluene, was also tested. The stability of retinyl palmitate over time in encapsulated systems, dispersed in gels at pH 5.6 and 7.0, was also studied. O/W emulsions were also prepared to compare the stability of vitamin A palmitate introduced in a lipophilic/hydrophilic medium (O/W emulsions) and a hydrophilic medium (hydrogels). HPLC analysis showed that encapsulated systems such as Lipotec_nanocapsules, Tagravit_A1 microcapsules, phosphatidylcholine liposomes, and Lipotec_liposomes protect the vitamin A ester over time from hydrolysis and from oxidation to retinaldeide and retinoic acid, and that Lipotec_nanocapsules and phosphatidylcholine liposomes also improve the vitamin's photostability. A change in pH (5.6–7.0) of the gels did not influence the vitamin ester's stability. pH levels of 4.0 and 8.0 determined a decrease in the stability of retinyl palmitate in the gels. A high concentration of sunscreens improved the photostability of retinyl palmitate in the gels at pH 5.6 and 7.0. Butylated hydroxy toluene protected retinyl palmitate from degradation induced by light at all the pH levels studied and by heat at pH 5.6 and 7.0, as can be seen from the study of the photostability of vitamin A palmitate under UVB and UVA and of stability over time. Rheological studies showed a slight decrease in the viscosity of the gels after UVB–UVA irradiation and a higher decrease in the viscosity of the gels and the emulsions after storage at 25 and 40°C. This decrease can be attributed to a partial degradation of hydroxy ethyl cellulose and of emulsifier, as can be seen from the decrease in shear stress versus shear rate values under these conditions of storage, denoting a depolymerization of the rheological modifier.