z-logo
Premium
Global analysis of reptile elevational diversity
Author(s) -
McCain Christy M.
Publication year - 2010
Publication title -
global ecology and biogeography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.164
H-Index - 152
eISSN - 1466-8238
pISSN - 1466-822X
DOI - 10.1111/j.1466-8238.2010.00528.x
Subject(s) - species richness , ecology , elevation (ballistics) , lizard , alpha diversity , beta diversity , temperate climate , arid , macroecology , altitude (triangle) , biology , geometry , mathematics
Aim  Latitudinal‐ and regional‐scale studies of reptile diversity suggest a predominant temperature effect, unlike many other vertebrate richness patterns which tend to be highly correlated with both temperature and water variables. Here I examine montane gradients in reptile species richness with separate analyses of snakes and lizards from mountains around the world to assess a predominant temperature effect and three additional theories of diversity, including a temperature–water effect, the species–area effect and the mid‐domain effect (MDE). Location  Twenty‐five elevational gradients of reptile diversity from temperate, tropical and desert mountains in both hemispheres, spanning 10.3° N to 46.1° N. Methods  Elevational gradients in reptile diversity are based on data from the literature. Of the 63 data sets found or compiled, only those with a high, unbiased sampling effort were used in analyses. Twelve predictions and three interactions of diversity theory were tested using nonparametric statistics, linear regressions and multiple regression with the Akaike information criterion (AIC). Results  Reptile richness and, individually, snake and lizard richness on mountains followed four distinct patterns: decreasing, low‐elevation plateaus, low‐elevation plateaus with mid‐elevation peaks, and mid‐elevation peaks. Elevational reptile richness was most strongly correlated with temperature. The temperature effect was mediated by precipitation; reptile richness was more strongly tied to temperature on wet gradients than on arid gradients. Area was a secondary factor of importance, whereas the MDE was not strongly associated with reptile diversity on mountains. Main conclusions  Reptile diversity patterns on mountains did not follow the predicted temperature–water effect, as all diversity patterns were found on both wet and dry mountains. But the influence of precipitation on the temperature effect most likely reflects reptiles' use of radiant heat sources (sunning opportunities) that are more widespread on arid mountains than wet mountains due to lower humidity, sparser vegetation and less cloud cover across low and intermediate elevations.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here