Premium
Predicting invasions in Australia by a Neotropical shrub under climate change: the challenge of novel climates and parameter estimation
Author(s) -
Van Klinken Rieks D.,
Lawson Ben E.,
Zalucki Myron P.
Publication year - 2009
Publication title -
global ecology and biogeography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.164
H-Index - 152
eISSN - 1466-8238
pISSN - 1466-822X
DOI - 10.1111/j.1466-8238.2009.00483.x
Subject(s) - climate change , range (aeronautics) , abundance (ecology) , shrub , ecology , species distribution , environmental science , environmental niche modelling , climate model , biology , habitat , ecological niche , materials science , composite material
Aim To test how well species distributions and abundance can be predicted following invasion and climate change when using only species distribution and abundance data to estimate parameters. Location Models were developed for the species' native range in the Americas and applied to Australia. Methods We developed a predictive model for an invasive neotropical shrub ( Parkinsonia aculeata) using a popular ecophysiological bioclimatic modelling technique (CLIMEX) fitted against distribution and abundance data in the Americas. The effect of uncertainty in model parameter estimates on predictions in Australia was tested. Alternative data sources were used when model predictions were sensitive to uncertainty in parameter estimates. The resulting best‐fit model was run under two climate change scenarios. Results Of the 19 parameters used, 9 could not be fitted using data from the native range. However, only parameters that lowered temperature or increased moisture requirements for growth noticeably altered the model prediction in Australia. Differences in predictions were dramatic, and reflect climates in Australia that were not represented in the Americas (novel climates). However, these poorly fitted parameters could be fitted post hoc using alternative data sources prior to predicting responses to climate change. Conclusions Novel climates prevented the development of a predictive model which relied only on native‐range distribution and abundance data because certain parameters could not be fitted. In fact, predictions were more sensitive to parameter uncertainty than to climate change scenarios. Where uncertainty in parameter estimates affected predictions, it could be addressed through the inclusion of alternative data sources. However, this may not always be possible, for example in the absence of post‐invasion data.