z-logo
Premium
Deep‐sea pelagic ichthyonekton diversity in the Atlantic Ocean and the adjacent sector of the Southern Ocean
Author(s) -
Fock Heino O.
Publication year - 2009
Publication title -
global ecology and biogeography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.164
H-Index - 152
eISSN - 1466-8238
pISSN - 1466-822X
DOI - 10.1111/j.1466-8238.2008.00435.x
Subject(s) - species richness , pelagic zone , productivity , transect , ecology , oceanography , deep sea , species diversity , environmental science , geography , geology , biology , economics , macroeconomics
Aim  Deep‐sea pelagic diversity is poorly understood. Local (SL) and regional (SR) ichthyonekton species richness are presented and analysed with respect to local and regional environmental factors, and biogeographical processes. Location  Sixty‐six stations from the Atlantic Ocean and adjacent sector of the Southern Ocean, 65° N to 57° S. Methods  Estimation of SL by means of rarefaction. Stepwise evaluation of SL and SR relationships by means of the second‐order corrected Akaike information criterion (AICc) after locally weighted scatterplot smoothing (LOESS) and linear fitting, analysis of saturation effects by means of slopes of species accumulation curves (log–log plots). Results  Latitudinal gradients were present for SL and SR, and were asymmetric between the Northern and Southern hemispheres. Relatively low species richness was encountered for the Southern Ocean. Asymmetry at the regional level by means of higher SR was attributed to area effects in the South Atlantic. Log–log plots indicated saturation of local assemblages and dependence on environmental factors. SL was related to productivity; this relationship was hump‐shaped. SR was positively related to area size and negatively to seasonality of production. Biogeographical effects were indicated in that SR peaks coincided with overlap zones of boreal and tropical faunas as a consequence of historical faunal exchange processes. Main conclusions  The stepwise approach allowed for distinction between effects of area size, productivity and biogeographical processes on diversity at local and regional scales. Productivity in particular is important in two ways. At the local scale, the link of productivity to SL is explained by a successional‐functional hypothesis of resource utilization, whereas the seasonality effect for SR reinforces the hypothesis of dependence of deep‐sea fishes on seasonality of production through changes of life‐history traits. The causes of low Antarctic faunal diversity remained unresolved.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here