z-logo
Premium
Phylogenetic analyses of band‐winged grasshoppers (Orthoptera, Acrididae, Oedipodinae) reveal convergence of wing morphology
Author(s) -
Husemann Martin,
Namkung Suk,
Habel Jan C.,
Danley Patrick D.,
Hochkirch Axel
Publication year - 2012
Publication title -
zoologica scripta
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.204
H-Index - 64
eISSN - 1463-6409
pISSN - 0300-3256
DOI - 10.1111/j.1463-6409.2012.00548.x
Subject(s) - vicariance , biology , acrididae , monophyly , biological dispersal , taxon , evolutionary biology , phylogenetic tree , orthoptera , biogeography , clade , morphology (biology) , convergent evolution , zoology , ecology , population , gene , biochemistry , demography , sociology
Husemann, M., Namkung, S., Habel, J.C., Danley, P.D. & Hochkirch, A. (2012). Phylogenetic analyses of band‐winged grasshoppers (Orthoptera, Acrididae, Oedipodinae) reveal convergence of wing morphology. — Zoologica Scripta , 41 , 515–526. Historically, morphological traits have been used to examine the relationships of distantly related taxa with global distributions. The use of such traits, however, may be misleading and may not provide the resolution needed to distinguish various hypotheses that may explain the distribution patterns of widely distributed taxa. One such taxon, the Oedipodine grasshoppers, contains two tribes principally defined by wing morphologies: the Bryodemini have broad wings whereas Sphingonotini are narrow‐winged. Through the use of morphological features alone, hypotheses concerning the evolution of these tribes cannot be distinguished. To differentiate hypotheses that may explain the distribution of Oedipodines, such as vicariance, natural dispersal and anthropogenic translocation, we used two mitochondrial and three nuclear gene fragments to reconstruct the phylogenetic relationships within and between the two tribes, and employed a molecular clock to evaluate the hypotheses of vicariance and dispersal. Our results clearly reject monophyly of the tribes and revealed monophyletic Old and New World clades, which is in agreement with previous molecular studies. The split between both clades was dated at 35 Ma (±12 Ma). This clearly rejects the vicariance hypothesis and supports a single invasion via the Beringian land bridge. In addition, our data clearly show that the similarities in wing morphology used for distinguishing both tribes are the result of at least one convergent event. Our study shows that interpretations of relationships based on the currently accepted taxonomy in the study groups will be error prone. We suggest that future revisions that consider our findings are required.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here