Premium
Underlying Synapomorphies and Anagenetic Analysis
Author(s) -
SÆTHER OLE A.
Publication year - 1979
Publication title -
zoologica scripta
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.204
H-Index - 64
eISSN - 1463-6409
pISSN - 0300-3256
DOI - 10.1111/j.1463-6409.1979.tb00644.x
Subject(s) - synapomorphy , biology , taxon , monophyly , sister group , phylogenetic tree , evolutionary biology , cladistics , cladogram , zoology , paleontology , clade , genetics , gene
Evaluations of holomorphological similarities are based on synapomorphies, symplesiomorphies, convergence, and parallelisms as results of parallel selection and of underlying synapomorphies respectively. Only synapomorphies and underlying synapomorphies can show genealogical relationships. Distinctions between parallel selections and underlying synapomorphies are of major phylogenetic importance, while distinctions between different evolutionary histories (eu‐parallelisms and pseudo‐parallelisms) are not. The circumstance when underlying synapomorphies are of special phylogenetic importance has been termed unique inside‐parallelism. Three such unique inside‐parallelisms are found in the female genitalia of the Chironomidae, where they are shown necessary for the understanding of subfamily relationships. — The first minimum criterion for recognizing synapomorphy (Schlee 1971) is corrected to: It should be present within the whole group or clearly secondarily reduced an apomorphic taxa. It should not be present in the same formation in any taxon outside the group which can be regarded as a possible sister group. — The anagenetic component of the evolutionary processes can, following a cladistic analysis, be calculated by means of the adjusted evolution index assigning the different recognizable steps of trends or morphocline number from 1 to 2 and calculating the arithmetic mean of all numbers. Examples from Chaoboridae and Chironomidae support the cladistic diagrams and point out that different stages belong to differing “grades”. Methods of numerical taxonomy may give a finer gradation of anagenetic levels.