Premium
Flight Characteristics of Two Plume Moths, Alucita pentadacty/a L. and Orneodes hexadactyla L. (Microlepidoptera)
Author(s) -
Norberg R. Åke
Publication year - 1972
Publication title -
zoologica scripta
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.204
H-Index - 64
eISSN - 1463-6409
pISSN - 0300-3256
DOI - 10.1111/j.1463-6409.1972.tb00573.x
Subject(s) - drag , lift (data mining) , plume , wing , lift to drag ratio , lift induced drag , galea , biology , mechanics , physics , anatomy , meteorology , computer science , data mining , thermodynamics
Norberg, R. Å. (Department of Zoology, University of Gothenburg, Göteborg, Sweden.) Flight characteristics of two plume moths , Alucita pentadactyla L. and Orneodes hexadactyla L. (Microlepidoptera). Zool. Scripta 1 (6): 241–246,1972.–Multiple exposure photographs of up to 100 exposures/sec were taken on two plume moth species in free, unrestrained flight, in order to determine approximate lift/drag ratios and other functional characteristics of their wings, which are of a remarkable structure for insects of this size. In Alucita the forewing is cleft in two fringed lobes, the hind‐wing in three, while in Orneodes both forewing and hindwing are deeply cleft in six very narrow, fringed lobes. Wing stroke frequencies are ca. 33 Hz in A. pentadactyla and ca. 40 Hz in O. hexadactyla. During both the downstroke and the upstroke the fringed wing lobes lie edge against edge, thus forming a continuous wing surface. The upstroke seems to contribute no useful forces in A. pentadactyla , possibly some propulsive force in O. hexadactyla. The wings are strongly supinated in the upstroke to minimize drag. From relative wind diagrams, lift/drag ratios of 1.1 and 1.4 (minimum values) can be read for A. pentadactyla and O. hexadactyla , respectively. It is thus clear that these species do not make more use of drag forces than of lift forces. However, in A. pentadactyla the drag force in the downstroke may be almost as large as the lift force. Since drag certainly is small in the upstroke, the drag force probably contributes significantly to useful forces for flight in A. pentadactyla. These plume moths operate at Reynolds numbers of ca. 700. Reynolds numbers are calculated for very small insects. It is obvious that the wings of the smallest insects must be operating at Reynolds numbers of about 1. The fringed wings of small insects are briefly discussed.