Premium
Glycogen Distribution in Relation to Epidermal Cell Differentiation During Embryonic Scale Morphogenesis in the Lizard Anolis lineatopus
Author(s) -
Alibardi Lorenzo
Publication year - 1998
Publication title -
acta zoologica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.414
H-Index - 37
eISSN - 1463-6395
pISSN - 0001-7272
DOI - 10.1111/j.1463-6395.1998.tb01148.x
Subject(s) - biology , epidermis (zoology) , morphogenesis , glycogen , keratin , microbiology and biotechnology , primordium , anatomy , endocrinology , biochemistry , paleontology , gene
The differentiation of the epidermis during scale morphogenesis in the lizard Anolis lineatopus has been studied by autoradiographic and immunocytochemical techniques and by electron microscopy, in relation to mitotic activity and to the distribution of glycogen. The flat embryonic epidermis of the early embryo is transformed into symmetric epidermal papillae which progressively become asymmetric and eventually form scales with stratified epidermal and peridermal layers. Papilla asymmetrization and epidermal stratification derive from cell hypertrophy and multiplication in the “basal hypertrophic layer of the forming outer side of scales” (BLOS). Glycogen is scarce or absent during early stages of epidermis development. In the dermis no glycogen is found at any stage of scale morphogenesis. Glycogen particles 25–40 nm in size accumulate in hypertrophic basal cells and peridermal cells during scale development. Conversely cells in the forming inner side of scales do not accumulate glycogen, divide less frequently than in the outer side and do not form a β–keratinized layer. It is suggested that an osmotic effect related to glycogen deposition causes increased hydration of the BLOS, whose cells become swollen and contribute to the asymmetrization of the epidermal papillae. Glycogen decreases in suprabasal differentiating cells and disappears from the BLOS at the stage of complete keratinization of the scale, around the period of hatching. Terminal differentiation in the peridermis and suprabasal epidermal layers takes place by cell flattening and condensation of the nucleus and cytoplasm as typical for apoptotic cells.