z-logo
open-access-imgOpen Access
Real‐time, in vivo analysis of malaria ookinete locomotion and mosquito midgut invasion
Author(s) -
Vlachou Dina,
Zimmermann Timo,
Cantera Rafael,
Janse Chris J.,
Waters Andrew P.,
Kafatos Fotis C.
Publication year - 2004
Publication title -
cellular microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.542
H-Index - 138
eISSN - 1462-5822
pISSN - 1462-5814
DOI - 10.1111/j.1462-5822.2004.00394.x
Subject(s) - midgut , biology , microbiology and biotechnology , lamellipodium , motility , epithelium , basal lamina , plasmodium berghei , epithelial polarity , cell migration , anatomy , cell , immunology , ultrastructure , malaria , biochemistry , botany , genetics , larva
Summary Invasion of the Anopheles mosquito midgut by the Plasmodium ookinete is a critical step in the malaria transmission cycle. We have generated a fluorescent P. berghei transgenic line that expresses GFP in the ookinete and oocyst stages, and used it to perform the first real‐time analysis of midgut invasion in the living mosquito as well as in explanted intact midguts whose basolateral plasma membranes were vitally stained. These studies permitted detailed analysis of parasite motile behaviour in the midgut and cell biological analysis of the invasion process. Throughout its journey, the ookinete displays distinct modes of motility: stationary rotation, translocational spiralling and straight‐segment motility. Spiralling is based on rotational motility combined with translocation steps and changes in direction, which are achieved by transient attachments of the ookinete's trailing end. As it moves from the apical to the basal side of the midgut epithelium, the ookinete uses a predominant intracellular route and appears to glide on the membrane in foldings of the basolateral domain. However, it traverses serially the cytoplasm of several midgut cells before entering and migrating through the basolateral intercellular space to access the basal lamina. The invaded cells commit apoptosis, and their expulsion from the epithelium invokes wound repair mechanisms including extensive lamellipodia crawling. A ‘hood’ of lamellipodial origin, provided by the invaded cell, covers the ookinete during its egress from the epithelium. The flexible ookinete undergoes shape changes and temporary constrictions associated with passage through the plasma membranes. Similar observations were made in both A. gambiae and A. stephensi, demonstrating the conservation of P. berghei interactions with these vectors.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here