z-logo
Premium
Prokaryotic taxonomy in the sequencing era – the polyphasic approach revisited
Author(s) -
Kämpfer Peter,
Glaeser Stefanie P.
Publication year - 2012
Publication title -
environmental microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.954
H-Index - 188
eISSN - 1462-2920
pISSN - 1462-2912
DOI - 10.1111/j.1462-2920.2011.02615.x
Subject(s) - biology , taxonomy (biology) , prokaryote , evolutionary biology , bacterial taxonomy , genome , 16s ribosomal rna , context (archaeology) , taxon , phylogenetics , ribosomal rna , taxonomic rank , computational biology , gene , genetics , ecology , paleontology
Summary The ultimate goal of taxonomy is to establish a system that mirrors the ‘order in nature’. In prokaryote microbiology, almost all taxonomic concepts try to mirror the whole evolutionary order back to the origin of life with the cell as basic unit. The introduction of the 16S rRNA gene as molecular marker allowed for the first time the creation of a hierarchical taxonomic system based on one practical molecular marker. With the development of new and rapid sequencing technologies a wealth of new data can and will be used for critical evaluation of the taxonomic system. Comprehensive analyses of other molecular markers as well as total or partial genome comparisons confirmed the 16S rRNA based hierarchical system as ‘backbone of prokaryote taxonomy’ at least at the genus level and above. A tendency is visible to classify novel taxa more and more based on the genotype, i.e. comparative analyses of 16S rRNA and/or other gene sequence data (in multilocus sequence analysis, MLSA) at the genus and the species level, sometimes contrary to the indications of other (often phenotypic) data. The understanding of all the information behind these data is lagging far behind their accumulation. Genes and genomes do not function on its own and can only display their potential within the cell as the basic unit of evolution (and hence taxonomy). It is the phenotype and the natural selection that ‘drive’ evolution in a given environment. In this context, the ‘polyphasic taxonomic approach’ should be revisited again, taking into account the novel insights into genomes and other ‘omic’ sciences in a more strict and detailed context with the phenotype. This approach allows a more holistic view and provides a sound basis for describing the diversity of prokaryotes and has the potential to become the foundation of a more stable, in‐depth taxonomy of the prokaryotes.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here