Premium
Interactions and competition within the microbial community of the human colon: links between diet and health
Author(s) -
Flint Harry J.,
Duncan Sylvia H.,
Scott Karen P.,
Louis Petra
Publication year - 2007
Publication title -
environmental microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.954
H-Index - 188
eISSN - 1462-2920
pISSN - 1462-2912
DOI - 10.1111/j.1462-2920.2007.01281.x
Subject(s) - biology , microbial metabolism , gut flora , human gastrointestinal tract , microbiology and biotechnology , butyrate , competition (biology) , bacteria , gastrointestinal tract , biochemistry , ecology , genetics , fermentation
Summary The microbiota of the human intestinal tract play an important role in health, in particular by mediating many of the effects of diet upon gut health. Surveys of 16S rRNA sequence diversity in the human colon have emphasized the low proportion of sequences that match cultured bacterial species. This may reflect limited recent effort on cultivation rather than inherent unculturability, however, as anaerobic isolation methods can apparently recover a wide range of the diversity found. A combination of information from representative cultures, molecular tools for enumeration and tracking of bacterial metabolites offers the most powerful route to understanding the roles played by different groups of bacteria in the gut ecosystem. Progress is being made for example in defining key functional groups including primary colonizers of insoluble dietary substrates, and major contributors to metabolites such as butyrate that influence the health of the gut mucosa. There is increasing evidence that bacterial populations in the large intestine respond to changes in diet, in particular to the type and quantity of dietary carbohydrate. A general consequence of increased carbohydrate consumption is to reduce the pH of the gut lumen, which is likely to play a major role in determining bacterial metabolism and competition. Oligosaccharides used as dietary prebiotics must inevitably have complex effects upon the bacterial community that include non‐target organisms and the consequences of metabolic cross‐feeding and changes in the gut environment.