z-logo
Premium
Numbers and locations of native bacteria on field‐grown wheat roots quantified by fluorescence in situ hybridization (FISH)
Author(s) -
Watt Michelle,
Hugenholtz Philip,
White Rosemary,
Vinall Kerry
Publication year - 2006
Publication title -
environmental microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.954
H-Index - 188
eISSN - 1462-2920
pISSN - 1462-2912
DOI - 10.1111/j.1462-2920.2005.00973.x
Subject(s) - rhizosphere , biology , bacteria , elongation , botany , pseudomonas , root hair , ultimate tensile strength , biochemistry , genetics , materials science , gene , metallurgy
Summary Native bacteria, Pseudomonas and filamentous bacteria were quantified and localized on wheat roots grown in the field using fluorescence in situ hybridization (FISH). Seminal roots were sampled through the season from unploughed soil in a conservation farming system. Such soils are spatially heterogeneous, and many roots grow slowly through hard soil with cracks and pores containing dead roots remnant from previous crops. Root and rhizosphere morphology, and contact with soil particles were preserved, and autofluorescence was avoided by observing sections in the far‐red with Cy5 and Cy5.5 fluorochromes. Spatial analyses showed that bacteria were embedded in a stable matrix (biofilm) within 11 µm of the root surface (range 2–30 µm) and were clustered on 40% of roots. Half the clusters colocated with axial grooves between epidermal cells, soil particles, cap cells or root hairs; the other half were not associated with visible features. Across all wheat roots, although variable, bacteria averaged 15.4 × 10 5  cells per mm 3 rhizosphere, and of these, Pseudomonas and filaments comprised 10% and 4%, respectively, with minor effects of sample time, and no effect of plant age. Root caps were most heavily colonized by bacteria along roots, and elongation zones least heavily colonized. Pseudomonas varied little with root development and were 17% of bacteria on the elongation zone. Filamentous bacteria were not found on the elongation zone. The most significant factor to rhizosphere populations along a wheat root, however, was contact with dead root remnants, where Pseudomonas were reduced but filaments increased to 57% of bacteria ( P  < 0.001). This corresponded with analyses of root remnants showing they were heavily colonized by bacteria, with 48% filaments ( P  < 0.001) and 1.4% Pseudomonas ( P  = 0.014). Efforts to manage rhizosphere bacteria for sustainable agricultural systems should continue to focus on root cap and mucilage chemistry, and remnant roots as sources of beneficial bacteria.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here