Premium
Hydrothermal vent gastropods from the same family (Provannidae) harbour ɛ‐ and γ‐proteobacterial endosymbionts
Author(s) -
Urakawa Hidetoshi,
Dubilier Nicole,
Fujiwara Yoshihiro,
Cunningham Dale E.,
Kojima Shigeaki,
Stahl David A.
Publication year - 2005
Publication title -
environmental microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.954
H-Index - 188
eISSN - 1462-2920
pISSN - 1462-2912
DOI - 10.1111/j.1462-2920.2005.00753.x
Subject(s) - chemosynthesis , biology , hydrothermal vent , symbiotic bacteria , proteobacteria , ecology , bacteria , zoology , symbiosis , 16s ribosomal rna , paleontology , hydrothermal circulation
Summary The discovery of new hydrothermal vent systems in the back‐arc basins of the Western Pacific revealed chemosynthesis‐based faunal communities distinct from those of other vents. These vents are dominated by two related gastropods ( Alviniconcha spp. and Ifremeria nautilei ) that harbour symbiotic bacteria in their gills. We used comparative 16S ribosomal RNA (rRNA) gene sequencing and in situ hybridization with rRNA‐targeted probes to characterize the bacterial symbionts of Alviniconcha sp. and I. nautilei from the Manus Basin in the Western Pacific. The analyses revealed that these two gastropod species, although affiliated with the same family, harbour phylogenetically distant chemosymbionts, suggesting independent origins of these endosymbioses. The I. nautilei endosymbiont clusters with sulfur‐oxidizing bacteria within the γ‐Proteobacteria, as is the case for all previously characterized endosymbionts from a wide diversity of host taxa harbouring thioautotrophic prokaryotes. In contrast, the Alviniconcha endosymbiont is affiliated with sulfur‐oxidizing bacteria within the ɛ‐Proteobacteria. These results show that bacteria from the ɛ‐Proteobacteria are also capable of forming endosymbiotic associations with marine invertebrates from chemosynthetic environments. More generally, the endosymbiotic lifestyle is now shown to be distributed throughout all recognized classes of the Proteobacteria.