z-logo
Premium
Towards a unification of unified theories of biodiversity
Author(s) -
McGill Brian J.
Publication year - 2010
Publication title -
ecology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.852
H-Index - 265
eISSN - 1461-0248
pISSN - 1461-023X
DOI - 10.1111/j.1461-0248.2010.01449.x
Subject(s) - unification , unified field theory , biodiversity , ecology , grand unified theory , biology , theoretical physics , physics , computer science , particle physics , fermion , programming language
Ecology Letters (2010) 13: 627–642 Abstract A unified theory in science is a theory that shows a common underlying set of rules that regulate processes previously thought to be distinct. Unified theories have been important in physics including the unification of electricity and magnetism and the unification of the electromagnetic with the weak nuclear force. Surprisingly, ecology, specifically the subfields of biodiversity and macroecology, also possess not one but at least six unified theories. This is problematic as only one unified theory is desirable. Superficially, the six unified theories seem very different. However, I show that all six theories use the same three rules or assertions to describe a stochastic geometry of biodiversity. The three rules are: (1) intraspecifically individuals are clumped together; (2) interspecifically global or regional abundance varies according to a hollow curve distribution; and (3) interspecifically individuals are placed without regard to individuals of other species. These three rules appear sufficient to explain local species abundance distributions, species–area relationships, decay of similarity of distance and possibly other patterns of biodiversity. This provides a unification of the unified theories. I explore implications of this unified theory for future research.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here