Premium
Coupled predator–prey oscillations in a chaotic food web
Author(s) -
Benincà Elisa,
Jöhnk Klaus D.,
Heerkloss Reinhard,
Huisman Jef
Publication year - 2009
Publication title -
ecology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.852
H-Index - 265
eISSN - 1461-0248
pISSN - 1461-023X
DOI - 10.1111/j.1461-0248.2009.01391.x
Subject(s) - predation , predator , food web , biology , ecology , zooplankton , food chain , plankton , generalist and specialist species , habitat
Ecology Letters (2009) 12: 1367–1378 Abstract Coupling of several predator–prey oscillations can generate intriguing patterns of synchronization and chaos. Theory predicts that prey species will fluctuate in phase if predator–prey cycles are coupled through generalist predators, whereas they will fluctuate in anti‐phase if predator–prey cycles are coupled through competition between prey species. Here, we investigate predator–prey oscillations in a long‐term experiment with a marine plankton community. Wavelet analysis of the species fluctuations reveals two predator–prey cycles that fluctuate largely in anti‐phase. The phase angles point at strong competition between the phytoplankton species, but relatively little prey overlap among the zooplankton species. This food web architecture is consistent with the size structure of the plankton community, and generates highly dynamic food webs. Continued alternations in species dominance enable coexistence of the prey species through a non‐equilibrium ‘killing‐the‐winner’ mechanism, as the system shifts back and forth between the two predator–prey cycles in a chaotic fashion.