Premium
Tree–grass coexistence in savannas revisited – insights from an examination of assumptions and mechanisms invoked in existing models
Author(s) -
Sankaran Mahesh,
Ratnam Jayashree,
Hanan Niall P.
Publication year - 2004
Publication title -
ecology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.852
H-Index - 265
eISSN - 1461-0248
pISSN - 1461-023X
DOI - 10.1111/j.1461-0248.2004.00596.x
Subject(s) - competition (biology) , herbivore , ecology , tree (set theory) , biology , niche differentiation , productivity , niche , mathematics , mathematical analysis , macroeconomics , economics
Several explanations for the persistence of tree–grass mixtures in savannas have been advanced thus far. In general, these either concentrate on competition‐based mechanisms, where niche separation with respect to limiting resources such as water lead to tree–grass coexistence, or demographic mechanisms, where factors such as fire, herbivory and rainfall variability promote tree–grass persistence through their dissimilar effects on different life‐history stages of trees. Tests of these models have been largely site‐specific, and although different models find support in empirical data from some savanna sites, enough dissenting evidence exists from others to question their validity as general mechanisms of tree–grass coexistence. This lack of consensus on determinants of savanna structure and function arises because different models: (i) focus on different demographic stages of trees, (ii) focus on different limiting factors of tree establishment, and (iii) emphasize different subsets of the potential interactions between trees and grasses. Furthermore, models differ in terms of the most basic assumptions as to whether trees or grasses are the better competitors. We believe an integration of competition‐based and demographic approaches is required if a comprehensive model that explains both coexistence and the relative productivity of the tree and grass components across the diverse savannas of the world is to emerge. As a first step towards this end, we outline a conceptual framework that integrates existing approaches and applies them explicitly to different life‐history stage of trees.