z-logo
Premium
Non‐linear input–output properties of the cortical networks mediating TMS‐induced short‐interval intracortical inhibition in humans
Author(s) -
LackmyVallee Alexandra,
Giboin LouisSolal,
MarchandPauvert Véronique
Publication year - 2012
Publication title -
european journal of neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.346
H-Index - 206
eISSN - 1460-9568
pISSN - 0953-816X
DOI - 10.1111/j.1460-9568.2011.07961.x
Subject(s) - interval (graph theory) , neuroscience , psychology , mathematics , combinatorics
The effects of transcranial magnetic stimulation (TMS) on post‐discharge histograms of single motor units in the first dorsal interosseous have been tested to estimate the input–output properties of cortical network‐mediating short‐interval intracortical inhibition (SICI) to pyramidal cells of the human primary motor cortex. SICI was studied using the paired pulse paradigm (2‐ms interval): test TMS intensity was varied to evoke peaks of different size in post‐discharge histograms, reflecting the corticospinal excitatory post‐synaptic potential in the relevant spinal motoneuron, and conditioning TMS intensity was constant (0.6 × the resting motor threshold). Navigated brain stimulation was used to monitor the coil position. A linear relationship was observed between test peak size and test TMS intensity, reflecting linear summation of excitatory inputs induced by TMS. SICI was estimated using the difference between conditioned (produced by the paired pulses) and test peaks (produced by the isolated test pulse). Although the conditioning intensity (activating cortical inhibitory interneurons mediating SICI) was kept constant throughout the experiments, the level of SICI changed with the test peak size, in a non‐linear fashion, suggesting that low‐threshold cortical neurons (excitatory interneurons/pyramidal cells) are less sensitive to SICI than those of higher threshold. These findings provide the first experimental evidence, under physiological conditions, for non‐linear input/output properties of a complex cortical network. Consequently, changes in the recruitment gain of cortical inhibitory interneurons can greatly modify the excitability of pyramidal cells and their response to afferent inputs.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here