z-logo
Premium
Electrophysiological responses of rat olfactory tubercle neurons to biologically relevant odours
Author(s) -
Rampin Olivier,
Bellier Camille,
Maurin Yves
Publication year - 2012
Publication title -
european journal of neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.346
H-Index - 206
eISSN - 1460-9568
pISSN - 0953-816X
DOI - 10.1111/j.1460-9568.2011.07940.x
Subject(s) - odor , electrophysiology , stimulation , premovement neuronal activity , neuron , neuroscience , biology , population , olfaction , tubercle , medicine , genetics , environmental health , bacteria , bacilli
Biologically relevant odours were used to stimulate olfactory tubercle neurons in anaesthetized male rats. Among 120 recorded neurons, 118 showed spontaneous activity (mean firing rate, 15.0 ± 1.4 spikes/s). Ninety‐eight neurons were exposed to at least one of the four following odour sources: an empty vial, or a vial containing food pellets (familiar odour), a sample of oestrous rat faeces (conspecific sexual odour), or a sample of male fox faeces (predator odour). The proportion of neurons responding with a change in activity was significantly linked to the odour applied. Repetition of the stimulation with the same odour elicited the same activity change. Between 50 and 70% of neuronal activity changes were not accompanied by respiration changes. Fifty‐six neurons were exposed successively to all four odours, and 38 of them showed an activity change in response to at least one. The response of a neuron to an odour was not affected by its response to the previous one, and no neuron responded in the same manner to all odours. Conversely, no odour elicited a unique response in this population of neurons. However, the proportions of excited, inhibited and insensitive neurons depended significantly on the odour applied, suggesting that the recruitment of olfactory tubercle neurons is directly dependent on the biological significance of the odour.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here